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Abstract: Tilted fiber Bragg grating (TFBG) and reflective tilted fiber Bragg grating (R-TFBG) were 
proposed and demonstrated in the graded-index multimode fiber (GI-MMF). The TFBGs with 
grating planes tilted at an angle of 2.5° corresponding to the fiber axis were inscribed. The TFBGs in 
the GI-MMF had the good linear sensitivity to the temperature, strain and curvature. The fiber was 
then cleaved at the far end of the TFBG to form an R-TFBG using the Fresnel reflection of the fiber 
end. The reflective spectra of the R-TFBG were given, and the temperature sensing properties were 
also investigated.  
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1. Introduction 

Tilted fiber Bragg grating (TFBG) have been 

extensively investigated in recent years due to its 

unique properties in the field of sensing [1–12]. 

Bragg gratings in multimode fibers (MMFs) have 

also attracted much attention. Wanseret et al. [13] 

calculated the spectrum of a Bragg grating in the 

MMF and also used it as a bend sensor. Mizunami  

et al. [14] experimentally reported the spectral 

properties of MMF gratings and investigated the 

temperature sensing performance and the 

polarization characteristics. Szkopek [15] proposed 

a novel multimode fiber structure with modal 

propagation characteristics tailored to facilitate the 

creation of narrowband high-reflectivity fiber Bragg 

gratings. Zhou et al. [16] experimentally showed 

that the radiation pattern of the multimode TFBG 

was more restricted than the single ones. Yang et al. 

[17] fabricated TFBGs with different tilt angles and 

observed some unique features of the multimode 

TFBG. Chen et al. [18] made the thinner clad of the 

multimode TFBG using hydrofluoric acid (HF)  

acid corrosion and found out that the higher order 

modes were much more sensitive than the low order 

modes to the external refractive index. 

In most experiments, the transmission spectra of 

the TFBG were detected, and the wavelength shift of 

the notches in the transmission spectra was then 

employed for the sensing of various parameters 

[1–3]. Another commonly-used method is to 

re-couple the backward cladding mode into the 
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lead-in single mode fiber via core-offset coupling  

[4, 5], employing a short section of the multimode 

fiber [6, 7] or an optical fiber taper [8]. The structure 

is relatively complex and not flexible enough for the 

applications that require the small size of the sensor. 

In this paper, two kinds of TFBG sensors are 

fabricated based on the graded-index multimode 

fiber, and the sensing properties are fully explored. 

2. Sensor fabrication and its sensing 
characteristics 

In the first experiment, the TFBG was fabricated 

in a singlemode-multimode-singlemode (SMS) fiber 

structure, similar to that in [19], as shown 

schematically in Fig. 1. The TFBG had a length of 

10 mm, and both ends had an additional 20-cm 

graded-index multimode fiber (GI-MMF). Both ends 

were respectively fusion spliced to single mode 

fibers (SMFs). 

 Cladding Cladding 
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Core

SMF GI-MMF SMF

GI-TFBG

 
Fig. 1 Schematic diagram of the TFBG structure and 

principle of operation. 

By using the 248-nm KrF excimer laser 

(BraggStar Industrial-1 000-248 nm-FT, Coherent, 

Inc.), TFBGs were fabricated in th hydrogen-loaded 

GI-MMF, which had a core diameter of 62.5 μm. 

The hydrogen loading was performed with a 

pressure of 120 bar and 70 ℃ for 3 days. The 

ultraviolet (UV) laser beam with a size of 3.5 mm×  

7 mm, which was expanded by a beam telescope and 

then converged to the fiber right behind the phase 

mask. The uniform phase mask has a period of 

1074.6 nm. We fabricated 2.5° slanted gratings with 

an exposure time of 45 seconds, with the laser 

operating at a rate of 100 Hz and 6mJ per pulse. The 

spectrum was monitored by an optical spectrum 

analyzer (Si720, Micron Optics Inc.) with a 

resolution of 1 pm. The transmission spectrum of the 

GI-TFBG was shown in Fig. 2. 

 

20

15

10

5

0 

In
te

ns
it

y 
(d

B
) 

1530 1540 1550 1560 1570 1580 1590
Wavelength (nm)  

Fig. 2 Transmission spectra of 2.5° GI-TFBG. 

The sensing performance of the GI-TFBG was 

evaluated by a series of experiments. First, we put 

the GI-TFBG into a temperature test chamber 

(WD7005) and recorded the transmission spectra 

every 20 ℃ raised from the room temperature (26 ℃) 

to 106 ℃. We found that the wavelength shift of 

each peak in the transmission spectrum was the 

same, so we selected the transmission peak with the 

maximum fringe contrast to do the temperature 

measurement. The wavelength shift as a function of 

the temperature is shown in Fig. 3. The temperature 

sensitivity of 11 pm/℃ and a linearity of 0.99882 

were obtained. The strain and curvature responses 

were also measured. The strain sensitivity and 

curvature sensitivity were 0.77 pm/με and 21 pm/m–1, 

as shown in Figs. 4 and 5, respectively. The strain 

linearity and curvature linearity were 0.9999 and 

0.9997, respectively. High sensitivity measurement 

of the curvature over a large scale could be obtained. 
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Fig. 3 Wavelength shift as a function of the temperature. 
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Fig. 4 Wavelength shift of the transmission spectrum of the 

GI-TFBG under different strain. 
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Fig. 5 Wavelength shift of the transmission spectrum of the 

GI-TFBG under different curvature. 

In order to make sensors with a smaller size, the 

reflective TFBG (R-TFBG) sensor was developed 

by using the Fresnel reflection of the fiber end. The 

sensor had a simple fiber tip structure, and only the 

reflective spectrum was measured for the 

temperature measurement. The TFBG was inscribed 

in the GI-MMF using the same fabrication process 

and laser parameters. After the inscription of the 

TFBGs, the far end was cleaved to form the 

R-TFBGs by introducing the Fresnel reflection of 

the fiber end. Figure 6 shows the schematic diagram 

of the R-TFBGs on the standard SMF or GI-MMF. It 

took about 2 minutes of the UV-laser exposure to 

fabricate a TFBG in the SMF while about only 45 

seconds to fabricate a TFBG with a similar 

reflectivity in the GI-MMF, due to the higher doping 

concentration of Ge in the latter. 
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Fig. 6 Schematic diagram of two R-TFBG sensor structures 

in the (a) SMF and (b) GI-MMF. 

The reflective spectra of the two R-TFBGs were 

recorded by an optical spectrum analyzer (OSA), as 

shown in Fig. 7. In the short wavelength range of the 

reflective spectrum of the R-TFBG in th SMF, the 

wavelength notches were similar to that in the 

transmission spectrum of a typical TFBG, except for 

a certain number of losses during the reflection on 

the fiber end. The contrast of the resonant notches 

almost doubled as the reflected light transmitted 

through the TFBG twice. The Bragg reflection was 

still observed in Fig. 7(a) as the reflectivity of the 

TFBG at the Bragg wavelength was much higher 

than that of the Fresnel reflection. In the GI-MMF 

R-TFBG sensor, there was a sequence of resonant 

notches corresponding to different orders of the core 

mode in the GI-MMF, as shown in Fig. 7(b).  

Before cleaving the far end of the TFBGs in the 

SMF and GI-MMF, the Bragg wavelengths were 

determined to be 1557.1 nm and 1582.4 nm, 

respectively, from the reflective spectra. The 

effective indices of the core mode in two kinds of 

fibers were further calculated to be 1.449 and 1.472, 

respectively. 
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Fig. 7 Reflective spectra of (a) SMF R-TFBG and (b) GI-MMF 

R-TFBG sensors. 

Further, the temperature responses of these two 

sensors were tested. By an automatically-controlled 

temperature test chamber, the temperature was 

raised from 26 ℃ to 106 ℃. The reflective spectra 

were recorded every 20 ℃, as shown in Figs. 8(a) 

and 8(b). The resonant notches with the largest 

contrast were chosen, and their shifts as a function 

of the temperature were measured, as shown in Figs. 

9(a) and 9(b), respectively. The selected resonant 

notch could be identified by the peak counting 

method, as all the resonant notches had the same 

temperature sensitivity, and the total number of the 

notches would not change during the sensing 

process. The temperature sensitivities of the 

R-TFBG in the SMF and GI-MMF were 10 pm/℃ 

and 11 pm/℃, respectively. Both of them had the 

good linearity of 0.9999 and 0.9998, respectively. It 

was also indicated by the experimental results that 

the temperature sensitivity of the Bragg wavelength 

in the R-TFBG in the SMF was the same as that of 

the resonant notches. 
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Fig. 8 Expanded reflective spectra of (a) SMF R-TFBG and 

(b) GI-MMF R-TFBG sensors at different temperatures. 
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Fig. 9 Wavelength shift of the resonant notch with the 

maximum contrast as a function of the temperature: (a) SMF 

R-TFBG and (b) GI-MMF R-TFBG. 
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3. Conclusions 

In conclusion, the tilted fiber Bragg gratings 

have been inscribed in the graded-index multimode 

fibers, and the sensing performance has been 

analyzed. Using the Fresnel reflection, the reflective 

tilted fiber Bragg gratings have been fabricated in 

both the hydrogen-loaded single mode fiber and 

graded-index multimode fiber. The reflective spectra 

have been analyzed, and the temperature sensing 

performance has also been investigated. These 

sensors had a small size and were easy to be 

fabricated and used. 
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